Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Intervalo de año
1.
Biosensors and Bioelectronics: X ; 13:100301, 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-2165111

RESUMEN

This paper presents a portable, fast and accurate electrochemical impedance spectroscopy (EIS) device with 8-well interdigitated electrode chips for biomarker detection. The design adopts low crest factor multisine signal synthesis at low frequencies (<1 kHz) and single-tone signals at high frequencies (>1 kHz), which significantly increases measurement speed without sacrificing accuracy. In addition, the low excitation amplitude of 10 mV preserves impedance linearity and protects the biosamples. The system achieved an average magnitude accuracy error of 0.30% in the frequency range of interest and it requires only 0.46 s to scan 28 frequency points from 10 Hz to 1 MHz. Experiments were conducted to test the capability to detect antibodies against SARS-CoV-2. Gold nanoparticles bound with protein G (GNP-G) were employed as the conjugated secondary antibody probe to detect anti-SARS-CoV-2 IgG in serum. A highly statistical significance (p = 7×10−6) could be found in the impedance data at 10 kHz. The impedance magnitude alteration caused by the GNP-G of the positive and negative groups were 27.2%±13.6% and 4.1%±1.7%, respectively. The results imply that the proposed system enables rapid COVID-19 antibody biomarker detection. Moreover, the EIS system and GNPs have the potential to be modified to detect other biomarkers.

2.
preprints.org; 2021.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202110.0177.v1

RESUMEN

Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of Coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in cardiovascular system, the clinical applications centered on the NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process based on the clinical images and mathematical modeling to assess the endothelial function and vulnerability of atherosclerotic plaque. Then, the emerging bioimaging technologies that have the potential to directly measure the arterial NO concentration were discussed, including the Raman spectroscopy and electrochemical sensor. Aside from the diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the inhaled NO therapy to treat the pulmonary hypertension and COVID-19, stem cell therapy and NO-releasing platform to treat endothelial dysfunction and atherosclerosis.


Asunto(s)
Aterosclerosis , Síndrome Endotelial Iridocorneal , Hipertensión Pulmonar , Enfermedades Cardiovasculares , Neoplasias Primarias Secundarias , COVID-19 , Placa Aterosclerótica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA